目标检测、人体姿态估计与动作捕捉和目标追踪在YOLO系列算法中的实现与应用
YOLO及You Only Look Once,是一种目标检测算法,目标检测任务的目标是找到图像中的所有感兴趣区域,并确定这些区域的位置和类别概率。目标检测领域的深度学习方法主要分为两大类(如图1):两阶段式(Two-stage)目标检测算法和单阶段式(One-stage)目标检测算法。两阶段式是先由算法生成一系列候选边界框作为样本,然后再通过卷积神经网络分类这些样本,也被称为基于区域的方法,例如R-CNN、Fast R-CNN、Faster R-CNN、R-FCN等;后者则是直接将目标边界定位问题转换成回归问题,图像会被缩放到同一尺寸,并以网格形式均等划分,模型仅需处理图像一次就能得到边界框坐标跟类概率,例如MultiBox、YOLO、SSD等。